Posted: May 22nd, 2023
According to Kotz and Treichel, the solubility of various substances increases with increases in the temperatures of their surroundings, although this is not always the case. Most often, graphs are used in indicating the relationship between temperature and solubility since it provides a clear view of the trend regarding the two variables. Solubility refers to the quantity of solute necessary to attain equilibrium between the undissolved solute and a saturated solvent at any given temperature. Temperature is a key factor when it comes to solubility of salts substance, and in most cases it is passively correlated with the latter (Kotz & Paul Treichel14).
Being an ionic compound, as Krumhansl indicates, Potassium Nitrate consists of a powerful lattice of ionic bonds (Krumhansl 9). These ionic bonds give the compound a number of physical attributes that certainly affect this study. The compound has both high boiling and melting points because of the powerful linkages, which makes the separation of its molecules extremely energy-intensive. This easily explains the lower rates of solubility of the alkaline earth metals when exposed to lower temperatures. At such temperatures, the cation-anion complex is extremely rigid and the process of separation will require higher activation energy. As the temperature is increased, ionic constituents of the compound collide vigorously because of the high level of energy. As the water bath’s temperature increases, solubility of KNO3 increases since the level of kinetic energy elevated. The process of dissolution is a chemical reaction that involves overpowering of chemical barriers that prevent the attainment of activation energy. The collision between NaCl and KNO3 ions is necessary in order for Potassium Nitrate to dissolve, which ultimately produces energy that allows the occurrence of a chemical reaction.
Place an order in 3 easy steps. Takes less than 5 mins.